1 Fig. 4 illustrates a straight horizontal road. A and B are points on the road which are 215 metres apart and M is the mid-point of AB.

When a car passes A its speed is 12 m s^{-1} in the direction AB. It then accelerates uniformly and when it reaches B its speed is 31 m s^{-1} .

Fig. 4

(i)	Find the car's acceleration.	[2]
(ii)	Find how long it takes the car to travel from A to B.	[2]
(iii)	Find how long it takes the car to travel from A to M.	[3]

- (iv) Explain briefly, in terms of the speed of the car, why the time taken to travel from A to M is more than half the time taken to travel from A to B.
- 2 In this question, air resistance should be neglected.

Fig. 2 illustrates the flight of a golf ball. The golf ball is initially on the ground, which is horizontal.

Fig. 2

It is hit and given an initial velocity with components of $15 \,\mathrm{m\,s}^{-1}$ in the horizontal direction and $20 \,\mathrm{m\,s}^{-1}$ in the vertical direction.

- (i) Find its initial speed. [1]
- (ii) Find the ball's flight time and range, *R* m. [4]
- (iii) (A) Show that the range is the same if the components of the initial velocity of the ball are 20 m s^{-1} in the horizontal direction and 15 m s^{-1} in the vertical direction. [1]
 - (*B*) State, justifying your answer, whether the range is the same whenever the ball is hit with the same initial speed. [2]

PhysicsAndMathsTutor.com

3 A particle is moving along a straight line and its position is relative to an origin on the line. At time t s, the particle's acceleration, $a \text{ m s}^{-2}$, is given by

a = 6t - 12.

At t = 0 the velocity of the particle is $+9 \text{ m s}^{-1}$ and its position is -2 m.

- (i) Find an expression for the velocity of the particle at time t s and verify that it is stationary when t = 3.
- (ii) Find the position of the particle when t = 2.
- 4 Fig. 4 illustrates points A, B and C on a straight race track. The distance AB is 300 m and AC is 500 m.

A car is travelling along the track with uniform acceleration.

Initially the car is at A and travelling in the direction AB with speed 5 m s^{-1} . After 20s it is at C.

(i)	Find the acceleration of the car.	[2]
(ii)	Find the speed of the car at B and how long it takes to travel from A to B.	[3]

5 A particle is moving along a straight line and its position is relative to an origin on the line. At time t s, the particle's acceleration, $a \text{ m s}^{-2}$, is given by

$$a=6t-12.$$

At t = 0 the velocity of the particle is $+9 \text{ m s}^{-1}$ and its position is -2 m.

(i) Find an expression for the velocity of the particle at time t s and verify that it is stationary when t = 3.

[4]

[4]

[3]

(ii) Find the position of the particle when t = 2. [3]

Particles P and Q move in the same straight line. Particle P starts from rest and has a constant acceleration towards Q of 0.5 m s^{-2} . Particle Q starts 125 m from P at the same time and has a constant speed of 10 m s^{-1} away from P. The initial values are shown in Fig. 4.

- (i) Write down expressions for the distances travelled by P and by Q at time *t* seconds after the start of the motion. [2]
- (ii) How much time does it take for P to catch up with Q and how far does P travel in this time? [5]